If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+4=-5a
We move all terms to the left:
a^2+4-(-5a)=0
We get rid of parentheses
a^2+5a+4=0
a = 1; b = 5; c = +4;
Δ = b2-4ac
Δ = 52-4·1·4
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*1}=\frac{-2}{2} =-1 $
| .3b=6.4+2.6 | | 7m=6m-5 | | −6x−8=−8−6x | | r/2=15/6 | | 11x+(15)=75 | | 8x-8=8x+2,400 | | 1+p=10+4p | | m/21=3/10 | | −6x+10+8x=12−4x | | 24=15w(13w) | | 1.5(4x-6)=12.5 | | b/2+9=18 | | 8/5x=10 | | x+10+x=23 | | 10+6q=13=5q | | 6q-6=5q | | −49=6c−13−4c | | 5/8y=6 | | −12+6x=8+2x | | 8(2x+1)=-9 | | -9w-19=-6w+6+17 | | 23+5b=83 | | -3(x+6)=-50 | | –3d=–10−2d | | 4x+3x+4=20 | | 6-2×3+u=(9-3×8)(2)+u | | 7d=8d+6 | | x=8=13 | | 19j−28−19j=−28 | | 0.7(x+10)+0.3x=42 | | -10k-3=-8-5k | | 12=x/9-1 |